
LETTER • OPEN ACCESS

Comparing process-based models with the
inventory approach to predict CH4 emission of
livestock enteric fermentation
To cite this article: Jianan Zhang et al 2023 Environ. Res. Lett. 18 035002

 

View the article online for updates and enhancements.

You may also like
Nanoscale phase-change materials and
devices
Qinghui Zheng, Yuxi Wang and Jia Zhu

-

Preparation a three-dimensional
hierarchical graphene/stearic acid as a
phase change materials for thermal energy
storage
Xiuli Wang, Xiaomin Cheng, Dan Li et al.

-

Thermal conductivity enhanced
polyethylene glycol/expanded perlite
shape-stabilized composite phase change
materials with Cu powder for thermal
energy storage
Shanmu Xu, Xiaoguang Zhang, Zhaohui
Huang et al.

-

This content was downloaded from IP address 137.75.80.24 on 01/08/2023 at 14:12

https://doi.org/10.1088/1748-9326/acb6a8
/article/10.1088/1361-6463/aa70b0
/article/10.1088/1361-6463/aa70b0
/article/10.1088/2053-1591/abb69e
/article/10.1088/2053-1591/abb69e
/article/10.1088/2053-1591/abb69e
/article/10.1088/2053-1591/abb69e
/article/10.1088/2053-1591/aad5c0
/article/10.1088/2053-1591/aad5c0
/article/10.1088/2053-1591/aad5c0
/article/10.1088/2053-1591/aad5c0
/article/10.1088/2053-1591/aad5c0


Environ. Res. Lett. 18 (2023) 035002 https://doi.org/10.1088/1748-9326/acb6a8

OPEN ACCESS

RECEIVED

14 June 2022

REVISED

23 January 2023

ACCEPTED FOR PUBLICATION

27 January 2023

PUBLISHED

17 February 2023

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Comparing process-based models with the inventory approach to
predict CH4 emission of livestock enteric fermentation
Jianan Zhang1, Lan Chen2, Yizhao Chen1,∗ and Pavel Groisman3,4

1 Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing,
Jiangsu, People’s Republic of China

2 College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
3 Hydrology Science and Services Corp., Asheville, NC, United States of America
4 North Carolina State University at NOAA National Centers for Environment Information, Asheville, NC, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: chenyzvest@gmail.com

Keywords: livestock, CH4, emission factors, process-based models, inventory-based models, enteric fermentation, Inner Mongolia

Supplementary material for this article is available online

Abstract
Livestock production is the largest anthropogenic methane (CH4) source globally over the decades.
Enteric fermentation of ruminants is responsible for the majority of global livestock CH4

emissions. Both inventory-based models (IvtMs) and process-based models (PcMs) are extensively
used to assess the livestock CH4 emission dynamics. However, the model performance and the
associated uncertainty have not been well quantified and understood, which greatly hamper our
credibility of the regional and global CH4 emission predictions. In this study, we compared the
CH4 emissions of livestock enteric fermentation (CH4,ef) predicted by multiple IvtMs and PcMs
across Inner Mongolia, a region dominated by typical temperate grasslands that are widely used for
animal husbandry. Twenty predictions from five IvtMs, and ten predations from five PcMs were
explicitly calculated and compared for the reference year of 2006. The CH4,ef predicted from PcMs
is lower than IvtMs and the variation between PcMs is substantially higher, i.e. 0.34± 0.36 g
CH4/m2 yr and 0.78± 0.14 g CH4/m2 yr for PcMs and IvtMs, respectively. Different model
strategies undertaken, i.e. the demand-oriented strategy for IvtMs and the resource-demand
co-determined one for PcMs, cause the different predictions of CH4,ef between the two model
groups. Using the results from IvtMs as the baseline scalar, we identified and benchmarked the
performance of individual PcMs in the study region. The quantitative information provided can
facilitate the understanding of key principles and processes of CH4,ef estimations, which will
contribute to the future model development of global CH4 emission.

1. Introduction

Methane (CH4) is one of the most important
greenhouse gases (GHGs) globally. According to
the fifth report of the United Nations Framework
Convention on Climate Change (IPCC 2013 ), its
global warming potential is 100 year time horizon
value of 28 and accounts for approximately 18%
of the total direct warming effect caused by GHG
(Montzka et al 2011). Therefore, a proper predic-
tion of the global CH4 sources and budget is cru-
cial for policy-making of climate change mitigation
(Chang et al 2019).

Increasing anthropogenic emissions are respons-
ible for the growing CH4 levels in the atmosphere
(Ghosh et al 2015). Among the various human-
induced CH4 sources, livestock production is one of
the largest contributors (Reay et al 2018), in which
emissions from enteric fermentation of ruminants
(CH4,ef) accounts for approximately 87% of the total
livestock emissions (Saunois et al 2020). According
to the latest Intergovernmental Panel on Climate
Change (IPCC) report (IPCC 2022), CH4,ef made up
23%of themore than tenCO2-equivalentGHGemis-
sions from the agriculture sector per year. Globally,
cattle, buffalo, goat and sheep together emit 96% of
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CH4,ef (FAO 2006). With the increasing demand for
animal products, CH4,ef is growing and this trend
is predicted to continue in the future (Dangal et al
2017b). Accurate estimation of CH4,ef is of great
importance to identify a more realistic definition
of the baseline for climate mitigation (Dangal et al
2017b), and to better understand the global CH4

budget (Saunois et al 2016).
Our current assessment of CH4 emissions from

livestock relies mainly on the inventory-based mod-
els (IvtMs) (Storm et al 2012). Using periodically
updated emission factors (EFs) and livestock dens-
ity distributions, the spatio-temporal pattern of live-
stock CH4 emissions was predicted globally. Crutzen
et al (1986) generated one of the first compre-
hensive assessments of global livestock CH4 produc-
tion using regional statistical metrics of associated
EFs. This approach was then adopted in the IPCC
methodology. With more detailed considerations of
livestock physiological conditions and activity scen-
arios, the IPCC Tier 2 and Tier 3 methods provide
more customized estimates following local conditions
but requires much more detailed local information
(IPCC 2006, IPCC 2019). Various estimations have
been made using different data sources. According to
the latest assessment, the estimated CH4 emissions
from livestock ranges from 103 to 130 Tg CH4 yr−1

depending on the inventory-based approaches glob-
ally (Chang et al 2021).

With the recognition of the importance of
anthropogenic-related processes in the global car-
bon budget and carbon-climate feedback, the global
vegetation models (GVMs), a typical land compon-
ent of earth systemmodels (ESMs), are incorporating
the land management components. Efforts have been
made over the past several decades to introduce the
livestock-related processes into GVMs. As summar-
ized by Pongratz et al (2018), an increasing number
of pasture system models with explicit consideration
of livestock processes have been incorporated into
GVMs and are supposed to be developed by more
model communities in the future. Those models
coupled the livestock processes, e.g. direct biomass
intake, trampling, and scorching, with vegetation
and soil carbon cycling. Examples include the pasture
simulation model (PASIM) in ORCHIDEE (Chang
et al 2013), the defoliate ratemodel (DRM) in Biome-
BGC (Han et al 2014), the SAVANNAmodel (Liedloff
et al 2001) and the Illius and O’Connormodel (IOM)
in LPJ-GUESS (Pachzelt et al 2015). All these models
have already been applied in continental and global
land C assessments. Based on this framework, CH4

emissions were further quantified by converting the
biomass or energy intake (Dangal et al 2017a). With
the increase of model tools, large discrepancies in
livestock C uptake predictions (0.1–16.1 gCm−2 yr−1

over temperate Eurasian Steppe (TES)) were found,
possibly leading to divergent predictions of CH4,ef

(Chen et al 2018). Moreover, such models have rarely

been explicitly benchmarked at large scales and there-
fore, the performances of individual model are still
largely unknown.

Despite the different methodologies and pro-
tocols being adopted in both IvtMs and process-
based models (PcMs), they share a similar target
for quantifying and predicting the GHG emissions
from the livestock sector. Currently, the two types
of approaches have been developed and updated
in relatively independent pathways. To date, these
approaches and their corresponding outputs have not
yet been explicitly compared and analyzed under a
unified protocol.

In this study, we presented a comprehensive com-
parison between the latest IvtMs andPcMs to estimate
CH4,ef over the temperate grasslands of Inner Mon-
golia (IM), a region dominated by typical temperate
grasslands that are widely used for animal husbandry.
The region was chosen as a suitable testbed for this
study due to the plenty background livestock inform-
ation and dataset, extensive grassland and livestock
types, and well validated vegetational model sets.
First, various IvtMswere implemented to quantify the
regional spatial-explicit CH4,ef. Thereafter, the res-
ults of different PcMs over the same region were gen-
erated using a livestock model comparison platform
(Chen et al 2018). Finally, the CH4,ef estimates from
both groups were explicitly compared and analyzed.
Based on the study, we aimed to quantify the dif-
ferences in modeling CH4,ef from various approaches
and sources, and then to identify and understand the
sources of model differences.

2. Materials andmethods

2.1. Study region
IM is the eastern end of TES. The longitudinal and
latitudinal extents are 97◦12′–126◦04′ E and 37◦24′–
53◦23′ N respectively. The region is dominated by the
temperate continental monsoon climate, character-
ized with short and hot summer, and long and cold
winter (Guo et al 2021). Grasslands are the domin-
ant vegetation type in IM, which has extensively been
used for animal husbandry over hundreds of years
(Wang et al 2017).

The regional grasslands exhibit a clear decreas-
ing trend of productivity from north-east to south-
west, with consecutive changes of grassland types
(figure 1). Temperate meadow steppe is mainly
distributed in the north-east of IM, with net
primary productivity (NPP) generally higher than
220 gC m−2. Temperate typical steppe is the major
grassland type in the middle of IM, with NPP gener-
ally ranging from 60 gCm−2 to 220 gCm−2. Temper-
ate desert steppe is mainly distributed in the south-
west of IM,withNPP generally lower than 60 gCm−2.

Various species are extensively held in IM, includ-
ing ruminants such as cattle, goats, sheep and
non-ruminants like horses, donkeys, mules. Sheep,
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Figure 1. The spatial distribution of grassland types in the study region. TDS: temperate dessert steppe; TTS: temperate typical
steppe; TMS: temperate meadow steppe. Hul: Hulunbuir; Hin: Hinggan League; Ton: Tongliao; Chi: Chifeng; Xil: Xilingol League;
Ula: Ulanqab; Bao: Baotou; Hoh: Hohhot; Bay: Bayannur; Ord: Ordos; Wuh: Wuhai; Alx: Alxa League.

goats and cattle comprise the major part of livestock
in IM, accounting for 60%, 20% and 8% of the total
livestock number (in head), respectively (Inner Mon-
golia Statistical YearBook, 2007).

2.2. Modeling approach and analysis
2.2.1. IvtMs
Five sources of IvtMs, i.e. IPCC default methods
Tier 1 and Tier 2 (hereafter T1_06 and T2_06; IPCC
2006), refined IPCC methods (hereafter T1_19 and
T2_19; IPCC 2019), mixed IPCC Tier 1 and Tier
2 method (hereafter MT_2019; Chang et al 2021),
Peng’s method (Peng et al 2016, Yu et al 2018) and the
Emissions Database for Global Atmospheric Research
(EDGAR) datasets (v2.0, v4.3.2, v5.0 and v6.0, Olivier
et al 1996, Janssens-Maenhout et al 2017, Crippa et al
2019), were included in this study. Both methods of
Peng and EDGAR follow the IPCC default methods
(Peng et al 2016, Crippa et al 2019) butwith customiz-
ations. Specifically, Peng’s method applied the T2_06
method as the baseline and improved the quantific-
ation of EF values with local statistics in China and
explicitly considers of the average lifespan of livestock
(Peng et al 2016, Yu et al 2018). The EDGAR versions
mainly applied EF values from the IPCCdefault Tier 1
method and incorporated algorithms from the IPCC
default Tier 2 method in recent versions; Crippa et al
(2019), Oliver et al (1996). The livestock distribution
map in the EDGAR dataset also changed with corres-
ponding updates from FAO.

Overall, the CH4,ef is calculated using the follow-
ing equation:

CH4,ef =
N∑
i=1

popi × EFi × (ALSi/12) (1)

where popi is the population of livestock type i; EFi
is the emission factors of livestock type i (kg CH4

head−1 yr−1); ALSi is the average lifespan of livestock
in a calendar year for livestock type i (month). The
ALS factor has not been explicitly considered in any
method other than Peng’s method, in which ALS for
cow, non-dairy cattle and sheep/goat is 12 months,
10months and 7months, respectively (Yu et al 2018).

For the T1_06 and T1_19 method, the EFi values
from Crutzen et al (1986) were adopted for each live-
stock type. In the T2_06 and T2_19 method, EFi is
calculated as follows:

EFi =

[
GEi ×Ym,i%× 365

EC

]
(2)

where GEi is the gross energy intake of livestock type
i per day (MJ head−1 d−1) and Ym,i% is CH4 conver-
sion factor of livestock type i, i.e. the percentage of
gross intake energy being converted to CH4. The val-
ues were obtained from the IPCC guidelines of 2006
and 2019 (IPCC 2006, IPCC 2019). EC is the energy
content of CH4 and equals 55.65 MJ kg−1 of CH4.
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GEi is calculated as follows:

GEi =


(

NEm,i+NEa,i+NEl,i+NEwork,i+NEp,i
REMi

)
+
(

NEg,i+NEwool,i
REGi

)
DEi%

 (3)

where NEm,i is the net energy required by the animal
for maintenance, MJ d−1; NEa,i is the net energy for
activity, MJ d−1; NEl,i is the net energy for lactation,
MJ d−1; NEwork,i is the net energy for work, MJ d−1;
NEp,i is the net energy for pregnancy; NEg,i is the net
energy needed for growth, MJ d−1; NEwool,i is the net
energy required to produce a year of wool. REMi is
the ratio of net energy available in a diet for mainten-
ance to digestible energy consumed by livestock type
i; REGi is ratio of net energy available for growth in a
diet to digestible energy consumed by livestock type
i; DEi% is the digestible energy expressed as a per-
centage of gross energy of livestock type i. Both REMi

and REGi are functions of DEi% (table S1). Among
the NE terms, NEa,i is a function of the activity coef-
ficient, which varies with the livestock feeding situ-
ations (table S2).We adopted the default sets from the
IPCC guidelines to the other NE terms for the T2_06
and T2_19 methods.

The MT_2019 method combined the T1_19 and
T2_19 methods (IPCC 2019). The EFs of dairy cows,
meat and other non-dairy cattle, buffaloes, sheep, and
goats were synthesized from the T2_19 method, and
EFs of the rest livestock types were from the T1_19
method (Chang et al 2021).

In Peng’s method, the EF of dairy cattle is
based on an exponential relationship with observed
milk production (Yu et al 2018), instead of a lin-
ear relationship used in the T2_06 method. The
species-specific ALS factor was explicitly considered
to quantify CH4,ef, as described above. In addi-
tion, the NE terms of sheep and goat were calcu-
lated following the T2_06 method but with values
of weight and wool production modified based on
the local data from the China Agricultural Products
Cost-benefit Information Compilation (CAPCIC,
Peng_s1) and the Food and Agriculture Organiza-
tion of the United Nations—China statistical year-
book (FAO-CSY, Peng_s2) (Yu et al 2018).

More details of the EF quantification can be found
in text S1. All the EFs used in our study were listed in
table S3.

For the EDGAR datasets, the livestock distribu-
tion map and the method to quantify the EF values
are updated with versions. The livestock distribution
keeps updating with the outcomes from FAO data-
sets. Specifically, EDGAR v4.3.2 used livestock dis-
tribution from FAO (2014) and EDGAR v5.0 used
livestock distribution from FAO (2018). Regarding

EF values, EDGAR v2.0 mainly applied a method
from IPCC (1997), and the following versions mainly
applied the T1_06 method (IPCC, 2006). Further
modifications were made to each upcoming version.
In the EDGAR v4.3.2, country-specific milk yield and
carcass weight were used to quantify the EF values of
dairy and non-dairy cattle (Janssens-Maenhout et al
2017). In the EDGAR v5.0 and v6.0, the EF values of
dairy and non-dairy cattle were further updated fol-
lowing the T2_06 method (Crippa et al 2019).

As the PcMs used a unified livestock unit,
i.e. sheep unit, to quantify the livestock density distri-
bution in the region (see the corresponding explan-
ation in section 2.2.2), we further calculated the EF
values of all IvtMs with sheep unit using the live-
stock conversion rate provided by FAO (FAO 2006,
table S4).

2.2.2. PcMs
Livestock activities are considered as part of the land
biogeochemical cycling in the PcMs. They are linked
to the vegetational and soil processes through direct
biomass intake, excretion, and trampling (Liu et al
2015, Vuichard et al 2007). To couple with the other
land surface processes, such livestock models are gen-
erally designed to run at daily or finer temporal res-
olutions. In this study, the outputs from five PcMs,
i.e. the DRM, the IOM, the PASIM, the SAVANNA
model and the Shiyomi model (SM), were used.

Livestock activities influence terrestrial C cycling
mainly through three processes: direct intake, excre-
tion and trampling (Vuichard et al 2007b).

For direct intake, livestock removes biomass from
plants and standing litters, causing defoliation and
thereafter lower litter input into the soil (Chen et al
2018). Three types of algorithms are used in different
models. In DRM, the direct intake was considered as
a linear relationship between the defoliation rate and
the available biomass (No’am et al 1992):

dBin

dt
= prin ×Ba,t (4)

where prin is the potential intake efficiency (m2 d−1

per livestock unit) and Ba,t is the available biomass for
time t (kg m−2).

SM considers the direct intake through the
livestock demand associated with livestock weight
(Shiyomi et al 2011):
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dBin

dt
=
∑
i

Wt × rin,i × qi (5)

whereWt is the livestock weight at time t (kg), rin,i is
the forage intake rate of composition i (i = live bio-
mass or dead biomass) and qi is the fraction of com-
position i. The forage intake is considered as percent-
age from available biomass once forage availability is
limited (table S1).

IOM, PASIM and the SAVANNA model share a
similar approach to calculate direct intake:

dBin

dt
= Kt × gf (6)

where Kt is the intake rate constrained by the for-
age availability at time t, which is calculated using the
Michaelis-Menten (M-M) function:

Kt =
Imax ×Vt

(β+Vt)
(7)

where Imax is the intake biomass with maximum con-
sumption ability of livestock (kg d−1 per livestock
unit). It is a function of livestockmass (AHFT) in IOM
but set to constant values in the other two models. Vt

is the vegetation abundance at time t (kg m−2). β is
the half maximum intake rate (kg m−2).

gf in equation (6) is the other factors regulating
the direct intake, such as the age level in IOM and the
weight condition in the SAVANNA model.

For livestock excretion, The C return from excre-
tion to soil is represented as a set percentage from
livestock intake in SM and DRM. It is calculated as
the difference between livestock intake and the sum
of other C outputs in PASIM.

The trampling and scorching effect is described as
a flux from aboveground C pools to the litter or soil
C pools:

Bts = n× p (8)

where Bts is the biomass loss from trampling and
scorching effect, n is the livestock density (livestock
unit m−2) and p is the effect coefficient, equals to
0.008 (kg per livestock unit) (Vuichard et al 2007b).

More detailed equations and parameterizations
of the PcMs can be found in tables S5 and S6,
respectively.

To quantify CH4,ef, a conversion rate from the
total biomass intake was used. Three from the five
models use this method to quantify livestock CH4,ef

with a same value of 3% (Minonzio et al 1998). In this
study, we applied this conversion rate to all the simu-
lations. As some PcMs only provide the sheep-based
parameterization, all livestock types were translated
into sheep unit based on the conversion rate provided
by FAO for the regional study (table S4).

2.3. Data used and processing
The grassland distribution of IM was from the
MODIS land cover data set with a grassland
classification from National Tibetan Plateau Data
Center (Pan et al 2021). Livestock distribution was
from ‘Gridded Livestock of theWorld’ (GLWVer. 2.0,
http://livestock.geo-wiki.org/), which represents the
livestock distribution in 2006 (Robinson et al 2014).
The livestock densities of sheep, goats and cattle were
used in this study. The spatial distribution of live-
stock density was used as the input for both IvtMs
and PcMs to quantify total CH4,ef emission from each
grassland pixel by multiplying it with CH4,ef of per
livestock unit.

The spatial distribution of NPP and above-
ground NPP (ANPP) across the study region were
obtained from the grassland version of Boreal Eco-
system Productivity Simulator (BEPS), with a spa-
tial resolution of 0.083 33◦. The model performance
has been extensively validated using in-situ obser-
vations over the study region and is widely applied
in the regional assessments (Chen et al 2016, 2017).
To run BEPS, leaf area index (LAI), meteorology,
CO2 and soil information are required. LAI was
from the GlobalLAI dataset (www.globalmapping.
org/globalLAI/). Meteorological data was from Met-
eorological Forcing Dataset for Land Surface Mod-
eling (http://rda.ucar.edu/datasets/ds314.0/). Atmo-
spheric CO2 data was from Mauna Loa Observatory,
Hawaii (20◦ N, 156◦ W) (http://cdiac.esd.ornl.gov/
ftp/trends/co2/maunaloa.co2). Soil texture data was
from the global soil dataset for use in ESMs (http://
globalchange.bnu.edu.cn/research/soilw).

CH4,ef from the EDGAR in 2006 was obtained
from the website: https://edgar.jrc.ec.europa.eu. We
collected the CH4,ef results from four versions of the
EDGAR datasets, i.e. v2.0, v4.3.2, v5.0 and v6.0. The
spatial resolution is 0.1◦ × 0.1◦ for v4.3.2, v5.0 and
v6.0, and 1◦ × 1◦ for v2.0.

All spatial-explicit data are for 2006 to match the
year of the livestock distributionmap. The spatial res-
olution of the datasets was unified to 0.083 33◦.

2.4. Model simulation and comparison
The PcMswere integrated into BEPS.We kept the ori-
ginal parameterizations in each PcM but only made
essential modifications to the livestock-type related
parameters to sheep unit based values. As the PcMs
generally use unified parameterizations for contin-
ental or global studies, our analysis in IM can well
reflect the model performances at the larger scales.

The age-related factor was considered in IOM, so
we undertook four simulations with different age-
based parameterizations (i.e. age = 0–1, 1–2, 2–3
and >3). In the SAVANNA model, the initial weight
of livestock varied with different management con-
ditions (Christensen et al 2003). It was set to three
levels (i.e. high initial weight,W ini = 80 kg per sheep
unit, medium initial weight,W ini = 60 kg, low initial
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weight, W ini = 40 kg) following Chen et al (2018).
In total, ten simulations were explicitly run for BEPS
coupled with the PcMs in this study.

The model was run in a daily step, with a spatial
resolution of 0.083 33◦. We summarized the accumu-
lated CH4,ef in 2006 from different PcMs to compare
with the corresponding outputs from IvtMs.

2.5. Parameter sensitivity analysis
Aparameter sensitivity analysis was conducted for the
PcMs. All parameters used in each PcMs were tested
through the following approach (Williams et al 2012):

|R|= ∆Y

Y
× X

∆X
(9)

where |R| is the response coefficient equivalent to rel-
ative change in CH4,ef (i.e.

∆Y
Y ) caused by the relat-

ive change in a parameter (i.e., X
∆X ). In each test, we

imposed a 2% increase in the parametermagnitude to
calculate the |R| value. A higher value means a higher
importance of the parameter to the CH4,ef estimation.
Parameters with |R| higher than 0.2 were considered
as sensitive.

3. Results

3.1. Spatial distributions of livestock density and
ANPP
The spatial distributions of livestock density and
grassland productivity were inconsistent across the
region. For livestock, the regional mean density of
cattle, sheep, and goats were 3.88 head km−2, 55.81
head km−2, and 19.94 head km−2, respectively. The
distribution of cattle within the region was more loc-
ally concentrated (i.e. >40 head km−2), especially in
Hohhot (Hoh), Ulanqab (Ula) and part of Chifeng
(Chi) (figure 2(a)), while the distributions of sheep
and goats were more dispersed (figures 2(b) and (c)).
Sheep were widely distributed over the middle and
south-east of IM, with the highest density centers (i.e.
>100 head km−2) in the south of Ordos (Ord) and
the middle of Ula. Goats were also widespread over
the entire region, and at particularly high densities
in the middle and east of Ord, the west of Bayannur
(Bay), and the north-east of Chi.

Although the total number of sheep and goats
each greatly exceeded that of cattle, the spatial distri-
bution of livestock density when converted to sheep
unit revealed high density over the south of Ula that
more closely resembled the distribution from that
of cattle, due to the high conversion rate of cattle
(figure 2(d)). Other areas with moderate or high
density of sheep unit were over the north-east of Chi
and the west of Bay, corresponding to the major cen-
ters of sheep and goats distribution.

The regional mean ANPP in 2006 was
58.17 gC m−2, which showed a decreasing spatial
trend from the northeast to southwest (figure 2(e)).

ANPP was generally higher than 120 gC m−2 in tem-
perate meadow grasslands (figure 2(e)), such as the
east of Xilingol (Xil), Hulunbuir (Hul), Hinggan
(Hin), Tongliao (Ton), and Chifeng (Chi). By con-
trast, ANPP in barren grasslands, primarily consist-
ing of temperate desert grasslands, was lower than
40 gC m−2, including areas in the west of Bay and Xil
and the centers of Ord and Xil.

Latitudinally, productive grasslands were mainly
located over high latitude areas with peak ANPP
around 45–50◦ N, while the livestock density gradu-
ally decreased from low to high latitude, with the
highest distribution in areas with latitude lower than
45◦ N (figure 2(f)).

3.2. Spatial distribution of predicted CH4,ef
For the IvtMs, both the ensemble mean and the indi-
vidual models of CH4,ef aligned well with the distri-
bution of livestock (figures 3(a) and S1). Moreover,
the spatial patterns were very similar between outputs
generated using different livestock types and those
that used sheep unit (figure 3(b)).

Spatial distribution of the standard deviation
(SD) of CH4,ef was generally consistent with that of
the mean CH4,ef for the IvtMs (figure 3(d)). In addi-
tion, inter-model differences were greater over areas
with high sheep density than those with high cattle
density, e.g. grasslands over the south of Ula andHoh,
indicating greater differences in the quantification of
CH4,ef from sheep than that of cattle. This conclusion
was supported by the SD distribution of sheep unit,
in which all areas with high livestock density showed
large discrepancies between models (figure 3(e)).

The coefficient of variation (CV) values of the
IvtMs were generally lower than 0.5 (figure 3(g)),
Only scattered areas in Hul presented CV values
higher than 1.0. Since a unified livestock index was
used for these analyses, the SDmap of CH4,ef obtained
using sheep unit was generally similar to the map of
mean CV, with small, local variations (figure 3(h)).

We then examined the spatial distribution of
mean CH4,ef from PcMs. The results showed that,
geographically, mean CH4,ef more closely resembled
ANPP distribution than the livestock density distri-
bution (figures 2(e) and 3(c)). Similar to ANPP, the
average CH4,ef in PcMs exhibited a decreasing tend-
ency from north-east to south-west, with high CH4,ef

(>0.6 g CH4/m2 yr) areas located over productive
grasslands. The SD distribution of CH4,ef aligned well
with maps of mean value, which reflected a close
positive relationship between the absolute difference
among individual PcM and absolute predicted CH4,ef

levels (figure 3(f)).
The CV values from PcMs were generally higher

than 0.9, with high CV values (> 1.6) areas largely in
productive areas (figure 3(i)). In particular, indi-
vidual models with low CH4,ef predictions more
closely followed patterns of livestock distribu-
tion, whereas models with high CH4,ef predictions
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Figure 2. The spatial distributions of livestock (a) cattle, (b) sheep, (c) goat, (d) livestock density using sheep unit (SU); and (e)
aboveground net primary productivity (ANPP) over the study region; (f) latitude distribution of ANPP, sheep, goats, cattle and
SU, with a bin of 1◦. Hul: Hulunbuir; Hin: Hinggan League; Ton: Tongliao; Chi: Chifeng; Xil: Xilingol League; Ula: Ulanqab; Bao:
Baotou; Hoh: Hohhot; Bay: Bayannur; Ord: Ordos; Wuh: Wuhai; Alx: Alxa League.

appeared to reflect constraints introduced by differ-
ences in resource availability (figure 3).

The PcMs prediction of seasonal variations in
CH4,ef further showed a transition from patterns
determined by demand in growing seasons to patterns
determined by resource limitations in non-growing
seasons (figure 4). At the beginning of the year, CH4,ef

from all models were highly constrained by forage
availability, generating similar low CH4,ef for dif-
ferent models from January to April. The resource
limitation was gradually alleviated after April, with
increasing grassland productivity. During the grow-
ing season, CH4,ef predictions presented a high diver-
gence between models, with different estimations of
forage demand. Finally, increases of CH4,ef slowed
down after September due to the decrease of available
resources. Such a seasonal pattern of CH4,ef is par-
ticularly clear for models with high estimations. For
example, CH4,ef from DRM followed a seasonal trend

that corresponded to the high similarity in spatial dis-
tribution between ANPP and CH4,ef (figure S3(h)).

3.3. Parameter sensitivity of the PcMs
Parameter sensitivity analysis indicated that CH4,ef

estimations from the PcMs is mainly controlled by
the direct intake process (table 1). In all models, the
parameters defining the potential or actual intake
rates exhibit very close relationships with the CH4,ef

outputs from the corresponding models. For the
models using the M-M function to quantify livestock
direct intake, the half maximum intake rate (β in
IOM and the SAVANNA model and equivalent to Kq

in PASIM) is another common sensitive parameter.
The |R| values for β are similar in IOM (0.40) and
the SAVANNA model (0.51), while the related para-
meters to calculate β is much higher for PASIM as an
exponential function is used. In addition, the CH4,ef
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Figure 3. The spatial distributions of (a) ensemble mean CH4,ef of inventory-based models (IvtM Mean); (b) ensemble mean
CH4,ef of inventory-based models using sheep unit (IvtM_SU Mean); (c) mean CH4,ef of Process-based models (PcMMean);
(d) standard deviation (SD) of CH4,ef of IvtMs (IvtM SD); (e) SD of of CH4,ef InvMs (IvtM_SU SD); (f) SD of CH4,ef of PcMs
(PcM SD); (g) CV of CH4,ef of IvtMs (IvtM CV); (h) CV of CH4,ef of IvtM SU (IvtM_SU CV); (i) CV of CH4,ef of PcMs (PcM
CV). Hul: Hulunbuir; Hin: Hinggan League; Ton: Tongliao; Chi: Chifeng; Xil: Xilingol League; Ula: Ulanqab; Bao: Baotou; Hoh:
Hohhot; Bay: Bayannur; Ord: Ordos; Wuh: Wuhai; Alx: Alxa League.

output of the SAVANNAmodel is also highly sensitive
to the weight-related parameters.

3.4. IvtMs vs PcMs
Finally, we compared the predicted CH4,ef between
IvtMs and PcMs. For most areas, mean CH4,ef from
the IvtMs was higher than those from the PcMs
(figure 5). Areas with the most distinguishing dif-
ferences (<−1.2 g CH4/m2 yr) were mainly in the
southwest of IM (figure 5(a)). CV of CH4,ef from the
IvtMs was generally lower than that from the PcMs
(figure 5(b)). Moreover, the ratio of mean CH4,ef

of PcMs to IvtMs (RPcMs/IvtMs) was lower than 0.6
for most areas, and only over the most productive,
RPcMs/IvtMs can be higher than 1.0 (figure 5(c)).

Regionally, the ensembled mean CH4,ef from
IvtMs was approximately twice larger than that from
PcMs and with a much less inter-model difference
(0.78± 0.14 g CH4/m2 yr for IvtMs and 0.34± 0.36 g
CH4/m2 yr for PcMs). Among the IvtMs predictions,
outputs frommodels using sheep unit showed slightly
higher mean CH4,ef and larger SD (0.79 ± 0.23 g
CH4/m2 yr) than the ones using varied livestock types
(figure 6(a)).

Within the IvtMs, minor CH4,ef difference was
foundbetween the outputs from the IPCCmethods of
2006 and the updated ones of 2019 in the study region
(figure 6(b)). Generally, outputs with IPCC Tier 2

method predicted higher CH4,ef than the ones using
the Tier 1 method. The T2_2019 method predicted
the highest CH4,ef among the IvtMs using varied live-
stock types, with a value of 0.90 ± 0.08 g CH4/m2 yr.
While the lowest prediction was from the Peng_s2
method, with a value of 0.56 g CH4/m2 yr. The sheep
unit based outputs for the IPCC Tier 1 and Tier 2
methods showed lower and higher CH4,ef comparing
to the outputs frommodels that used varied livestock
types, respectively. Predicted CH4,ef from EDGAR
versions ranged from 0.58 to 0.73 g CH4/m2 yr, which
was slightly higher than the IPCCT1_2006 outputs
but lower than the outputs from the IPCC Tier 2
method.

In contrast, outputs of PcMs showed much lar-
ger discrepancies among each other. Results from the
SAVANNA, SM and PASIM simulations were much
lower than the inventory-based outputs, suggesting
that thosemodels potentially under-estimated CH4,ef.
Outputs from the IOM simulations were closer to
the average level of the inventory-based outputs.
Specifically, the IOM_0_1 and IOM_1_2 simulations
predicted slightly lower CH4,ef than the lowest res-
ult from IvtMs, i.e. 0.47 g·CH4/m2 yr, while the
IOM_2_3 and IOM_3more predicted slightly higher
CH4,ef. TheDRMsimulation predicted a higher value,
i.e. 1.19 g CH4/m2 yr, than all the inventory-based
predictions.
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Figure 4. The seasonal pattern of CH4 emissions from livestock enteric fermentation (CH4,ef) predicted from the process-based
models (PcMs).

Table 1. The sensitive parameters in different process-based models to estimate CH4,ef.

DRMa PASIMb SMc IOMd The SAVANNA modele

Name |R| Name |R| Name |R| Name |R| Name |R|

prin 0.85 q 2.65 rin 0.73 AHFT 0.83 Imax 0.91
V r 0.73 K 1.38 Wmax 0.24 m 0.51 W ini 0.81

Imax 0.63 W ini 0.21 β 0.40 Wmax 0.77
Mj 0.23 β 0.51

Wmin 0.34
a DRM, prin: potential intake efficiency, Vr: residual aboveground biomass.
b PASIM, q: intake parameter, K: leaf area index related intake parameter, Imax: maximum livestock intake rate.
c SM, rin: actual intake rate as a fraction of animal weight,Wmax: maximum weight over a year,W ini: initial weight at the beginning of

the year.
d IOM, AHFT: mature mass per livestock unit,m: metabolic coefficient, β: half maximum intake rate,Mj: ratio of body mass in an age

class from mature mass.
e The SAVANNA model: Imax: same as the one from PASIM,W ini: same as the one from SM,Wmax: same as the one from SM, β: same as

the one from IOM,Wmin: minimum weight over a year.

4. Discussion

As the most important anthropogenic CH4 source,
livestock CH4 emissions have been widely investig-
ated and studied. However, to our knowledge, the two
major model approaches, the IvtMs and PcMs, have
not been explicitly compared and evaluated. Thus,
our study provides the first quantitative results to
illustrate the model differences within and between
approaches over the typical temperate grasslands and
explain the source of these differences.

All the IvtMs used in our study follow a uni-
fied schematic framework based on the IPCC default
method (IPCC 2006, 2019). Different predictions of
CH4,ef between IvtMs could be attributed to two
sources: the EF per livestock unit and the livestock
density. Because unified livestock population dis-
tribution data were used in this study (except the
EDGAR dataset), the CH4,ef difference between the
IvtMs was mostly from the EF values.

We found higher predicted CH4,ef from the mod-
els based on IPCC Tier 2 method than those from
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Figure 5. The spatial distributions of (a) difference of mean
CH4,ef between process-based models (PcMs) and
inventory-based models (IvtMs); (b) difference of
coefficient of variance (CV) between PcMs and IvtMs.
Positive values indicate that the ensembled mean CV values
of PcMs is higher than those for IvtMs and negative values
indicate that the ensembled mean or CV values of PcMs are
lower than IvtMs; (c) the ratio of mean CH4,ef of PcMs to
IvtMs (RPcMs/IvtMs). Hul: Hulunbuir; Hin: Hinggan League;
Ton: Tongliao; Chi: Chifeng; Xil: Xilingol League; Ula:
Ulanqab; Bao: Baotou; Hoh: Hohhot; Bay: Bayannur; Ord:
Ordos; Wuh: Wuhai; Alx: Alxa League.

IPCC Tier 1 method over the region. This is mainly
due to the higher EF values of sheep and goats than
cattle in the IPCC Tier 2 method (table S3). Mainly
due to an extra consideration of ALS of different live-
stock types, Peng’s method produced lower CH4,ef

than the other IPCC Tier 2 based methods in the
study region. The EDGARdatasets predictedmedium
CH4,ef among the IvtMs, which lies between the val-
ues from IPCC Tier 1 and Tier 2 methods. This result
is reasonable because the EDGAR versions updated
EF values and livestock distribution maps using the
IPCC default methods and GLW data series respect-
ively; Crippa et al (2019), Olivier et al (1996), which
lead to different combination of EF and livestock

distribution compared to the other models used in
our study.

To capture the seasonal variations of livestock-
related C budget linked to its environment, PcMs
generally characterized livestock activities from for-
age intake and digestion to excretion with finer tem-
poral resolutions than IvtMs. Once incorporated into
terrestrial biogeochemical models, the dynamics of
livestock, vegetation and soil are coupled. However,
owing to the different details of characterizing the
processes and parameterization, PcMs deliver diverse
results. In general, the forage intake in PcMs is a
function that considers the potential livestock intake,
i.e. the forage demand, and the biomass abundance,
i.e. the resource availability (Fryxell 1991). At the
demand end, the optimal intake rate or efficiency is
the parameter that generally determines the up limit
of livestock forage need and therefore is closely related
to the CH4,ef prediction in each PcM (table 1). A relat-
ively high grazing efficiency (prin) set in DRM prob-
ably led to its greatest CH4,ef prediction within the
PcMs (Chen et al 2018). Among the models using
the M-M function, IOM simulations with higher val-
ues of maximum intake rate (Imax) predicted greater
CH4,ef than PASIM and the SAVANNA model. In
addition, the physiological condition of livestock is
another cause of the divergent predictions. The range
of CH4,ef can be more than 0.1 g CH4,ef /m2 yr under
different livestock age or weight levels (table S7).
At the resource end, the current PcMs mainly con-
sider the quantity of above-ground vegetational bio-
mass as a scalar of forage availability. Once the live-
stock demand exceeds the local biomass abundance,
the instantaneous forage intake by livestock can be
constrained. Spatially, high dependence between the
resource availability and CH4,ef was found for mod-
els with high forage demand, e.g. DRM (figure S3).
While models with low forage demand such as the
SMand the SAVANNAmodel showed a similar spatial
pattern to livestock density. For the IOM with differ-
ent sets of age levels, the spatial distributions of CH4,ef

were more livestock density dependent and were also
limited by resource availability (figure S3).

Different model strategies for quantifying CH4,ef

contribute to the differences of both the regional
mean and spatial pattern between the two model
groups. The prediction of the IvtMs is mainly from
the perspective of livestock demand, with a compre-
hensive representation of energy costs from various
activities and scenarios. While many variables and
the corresponding parameterization are given as con-
stants and therefore can hardly capture the potential
inter-annual or seasonal variabilities of those factors
(Dangal et al 2017a). In other words, the IvtMs estim-
ate the expected CH4,ef with forage demand satis-
fied under certain conditions at a yearly step. For the
PcMs, the predicted CH4,ef is a result of both live-
stock demand and local resource availability and the
dynamics of CH4,ef can be explicitly considered and
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Figure 6. Regional CH4,ef of different models: (a) a comparison of the ensembled CH4,ef between process-based models (PcM),
inventory-based models (IvtM) and inventory-based models using sheep unit (IvtM_SU); (b) a comparison of individual models.
SAVANNA_LW: SAVANNAmodel with the low initial weight; SAVANNA_MW: SAVANNAmodel with the medium initial weight;
SAVANNA_HW: SAVANNA model with the high initial weight; IOM_0_1: IOM with a parameterization of livestock age 0–1,
IOM_1_2: IOM with a parameterization of livestock age 1–2; IOM_2_3: IOM with a parameterization of livestock age 2–3;
IPCCT1_2006: IPCC Tier 1 method based on IPCC (2006); IPCCT2_2006: mean values of IPCC Tier 2 methods based on IPCC
(2006); IPCCT1_2019: IPCC Tier 1 method based on IPCC (2019); IPCCT2_2019: mean values of IPCC Tier 2 methods based on
IPCC (2019); IPCC_2019MT: the mixed tier approach from Chang; Peng_s1: Peng’s method scenario 1; Peng_s2: Peng&apos;s
method scenario 2; IPCCT1_SU_2006: IPCC Tier 1 based on IPCC 2006 using sheep unit; IPCCT2_SU_2006: the mean value of
IPCC Tier 2 method based on IPCC 2006 with using sheep unit; IPCCT2SU_2019: the mean value of IPCC Tier 2 method based
on IPCC 2019 using sheep units; IPCC_2019MT_SU: the mixed tier approach from Chang using sheep unit; Peng_SU:
Peng&apos;s method using sheep unit. The error bars represent 1 SD.

updated by simulating the energy balance between
input and output. The description for different
sources and costs of energy was less detailed than for
the IvtMs, potentially due to a lack of usable data
source with compatible spatio-temporal resolution
to the GVMs. Due to the constraint from the local
resource, we observed a clear seasonality of CH4,ef

from the PcMs or areas with high predictions of
CH4,ef, corresponding to the seasonality of grassland
productivity (figure 4). Such a pattern reflects the
situation of traditional nomadic-based animal hus-
bandry, in which forage demand could hardly be sat-
isfied during the non-growing seasons, and probably
induce corresponding variability on livestock pop-
ulation caused by high mortality rate over winters
(Otani et al 2016). However, under modern man-
agement, the forage sources are not only dependent
on local forage availability in grasslands. The devel-
opment of forage commerce and the wide utiliza-
tion of forage bars can secure the forage source over
non-growing seasons (Wang et al 2017). For example,
the cultivation area of greenfolder was 634 000 hec-
tares in 2006 and the area of planted grasslands was
1475 300 hectares in IM, which produced 11 995 400
tons of harvested grass (IM Yearbook 2007). Build-
ing such infrastructure systems substantially mitigate
forage deficits during non-growing seasons or periods
with low production during the growing seasons

(Wang et al 2017). Thus, predictions from both
IvtMs and PcMs provide useful scalars to quantify
CH4,ef under different management scenarios. CH4,ef

should be closer to the estimations from IvtMs over
areas under a modern strategy of animal husbandry,
whereas it should be closer to the estimations from
PcMs over areas under a more traditional strategy.
Therefore, we argue that knowing the local manage-
ment level and strategy is important to accurately pre-
dict the spatial distribution and potentially the long-
term trend of livestock CH4 emissions.

Despite the strategy-dependent discrepancy, the
CH4,ef predictions from IvtMs and PcMs should
be of a similar order of magnitude. Using out-
puts from IvtMs as the baseline datasets, we sug-
gest that the DRM probably over-estimated the
regional CH4,ef with a value even higher than all
the IvtMs. Models such as the PASIM and the SM
should under-estimate CH4,ef (figure 6). Based on
our regional comparison, outputs from the IOM
seem more reasonable than those from the other
PcMs. Meanwhile, it is noteworthy that all the PcMs
used default parameterization based on the model
sources, in which the models were evaluated over dif-
ferent sites and regions. Therefore, accurate evalu-
ation of the spatio-temporal patterns of CH4,ef would
require more in situ observations to be available.
Recent development and setup of observations from
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non-invasive measurements (Negussie et al 2017,
Flesch et al 2018, Rey et al 2019), eddy covariance
(Tallec et al 2012, Prajapati and Santos 2018) and
isotope signature (Klevenhusen et al 2010, Chang
et al 2019) will provide opportunities to better eval-
uate and benchmark PcMs at large scales. The out-
put will facilitate the enhancement of our ability to
predict future CH4,ef and its impact on the C-climate
feedbacks.

Finally, both IvtMs and PcMs adopted constant
CH4,ef conversion ratio. However, the conversion rate
in reality is highly dependent on forage digestibility,
which is co-determined by the livestock species, for-
age composition and quality, growing period of for-
age and so on (Bruinenberg et al 2002, IPCC 2006).
Empirically, the forage digestibility ranges from 55%
to 65% for good pastures, well preserved approaches
and grain supplemented forage-based diets but can be
much lower with poor quality forages (IPCC 2006).
Thus, an explicit consideration of the variations in
digestibility will enhance model performance.

Although contrasting methodologies are imple-
mented by the two model groups, both outputs are
informative to the agricultural management andmit-
igation policy making. With a detailed description of
livestock demand, the IvtMs provide straightforward
and reliable baseline statistics of CH4,ef for both sci-
entists and decision-makers. Meanwhile, results from
the PcMs provide additional insights into the trade-
off between local livestock demand and resource
availability. The comparison of the spatio-temporal
patterns from the two model groups can assist the
identifications of local resource deficiency and com-
mercial forage supply requirements. The combined
information thus benefits a proper decision making
with a comprehensive consideration of food secur-
ity, ecosystem sustainability and mitigation needs
(Smith et al 2013). Nevertheless, our results stressed
that essential model calibrations and validations are
highly needed, especially for those critical processes
and the affiliated parameterizations in the PcMs. This
study can improve the understanding of both types of
models, which will facilitate a more accurate assess-
ment of CH4 emission from pasture ecosystems and
better representation of CH4 emission in ESMs in the
future.
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